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This work starts by generalizing in a gravitational field the fundamental quan- 
tum mechanical commutation relations between the coordinates of a charged 
test particle and its momentum. Assuming that the components of the momen- 
tum of this test charge obey a noncommutative algebra in the presence of an 
electromagnetic field, it is proved that the commutator can be identified with the 
electromagnetic field tensor. Using these results, the equation of motion of this 
charged object in the presence of both the electromagnetic and gravitational 
fields is derived from their field equations. In this work, the laws of motion of 
a particle in the electromagnetic and gravitational fields has been unified with 
the field equations. Although the field equations themselves are not directly 
unified, this work strongly suggests that the scheme may act as a possible 
framework for the unification of at least gravitational and electromagnetic 
interactions. 

1. I N T R O D U C T I O N  

The F e y n m a n - D y s o n  a p p r o a c h  to e lec t romagnet i sm (Dyson,  1990) 
has some r emarkab le  similari t ies to Einstein 's  theory  of gravi ta t ion.  In  the 
s t anda rd  f ramework ,  Maxwel l ' s  field equat ions  and the equa t ion  of m o t i o n  
of a charged  par t ic le  are comple te ly  independent .  However ,  due to the 
in t roduc t ion  of  some c o m m u t a t i o n  relat ions,  F e y n m a n  ob ta ined  the mos t  
i m p o r t a n t  result  tha t  the field equat ions  of e lec t romagnet i sm no t  only 
describe the space t ime behav ior  of  the field, but  also describe the m o t i o n  
of  the charged  objects  in it. The laws of  m o t i o n  of the charges  can be 
der ived from the e lec t romagnet ic  field equa t ions  and  the Loren tz -cova r i an t  
c o m m u t a t i o n  re la t ions  in a (3 + 1)-dimensional  flat spacetime.  In this way, 
the theory  unifies the field equat ions  with the equat ions  governing  the 
mo t ion  of the charges in an e lec t romagnet ic  field. A similar  p h e n o m e n o n  
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occurs in Einstein's theory of gravitation (Weinberg, 1972). The equations 
of general relativity unify the gravitational field equations with the equa- 
tion of motion of the sources creating this field. But due to the nonlinearity 
of Einstein's field equations, the test particle can move in its own gravita- 
tional field. However, Feynman and Dyson considered the electromagnetic 
field due to some external sources and that has been identified with the 
commutators between the components of the momentum of a test charge 
in it. It is implicitly assumed that the test charge does not alter the existing 
electromagnetic field and therefore the ultimate field equations remain the 
linear Maxwell equations. 

In this paper we generalize the Feynman-Dyson theory to the 
presence of a gravitational field. The covariant commutators in the curved 
spacetime lead to unified equation of motion of test charges in elec- 
tromagnetic and gravitational fields. This work may also be considered as 
a framework for a possible unified field theory. In Section 2 we find the 
relations between the fields and the commutators. In Section 3 we find the 
unified equation of motion of the test charge and in Section 4 we discuss 
our results. 

In our notations x ~ = (ct, x) denotes the coordinates of the particle 
with respect to an observer in a (3 + 1)-dimensional pseudo-Riemannian, 
torsion-free spacetime with metric ds 2 =guy dx ~ dx v (summation over the 
repeated indices is always implied over the range 0-3). The signature of the 
metric tensor g~v is ( +  1, - 1, - 1, - 1). c is the speed of light in vacuum. 
The proper time of the observer is calculated from dr = (l/c) ds. 

2. F IELD EQUATIONS OF GRAVITATION AND 
E L E C T R O M A G N E T I S M  

Suppose a particle of rest mass m0 and charge q exists at x" with 
respect to an observer in some pseudo-Riemannian spacetime, p ,  is its 
momentum. Following Dyson (1990), we assume the following commuta- 
tion relations are obeyed by the particle: 

I-x ~, x~3 = 0 (2.1) 

Ix", Pv] = -ih6"~ (2.2) 

As the spacetime coordinates follow a commutative algebra, the general 
theory of relativity holds good in this spacetime. The equations for the 
gravitational field which curves the spacetime will be given by the Einstein 
equations 

1 872G 
R,v- -~  Rg~v: c- z- T.~ (2.3) 



Test Charge in EM and Gravitational Fields 1565 

where the energy-momentum-stress tensor Tu~ is due to some external 
sources not including the test particle, by definition. The definitions of 
symmetric affine connection and Ricci curvature tensor are the usual ones 
(Weinberg, 1972): 

F ~  = �89 g~"(~?~ g~  + c?/~ gv~ - 0~ g~)  (2.4) 

Ruv = a~ c?,,(ln x / -  g) - c~ F~.,, + F~,,~ F t~  - F~., c g ~ ( l n ~ )  (2.5) 

where g = d e t ( g ~ )  and  3~ = ~/Ox ~. As 

[p~, g~V] # 0 (2.6) 

a suitable ordering convention is needed for defining the contravariant 
components of the momentum, p~= m o dxU/&. Using the standard (nor- 
mal) symmetric ordering convention, one can define 

p~ = l(p~ g~  +g~,p~) (2.7) 

Applying (2.1) and (2.2), we find 

[x ~, pV] = _ihgF '~ (2.8) 

It can be shown (Hojman and Shepley, 1991) that [x ~, pV] is symmetric in 
#, v indices and therefore the above result is consistent. 

Hence the solution of Einstein's equations with proper boundary 
conditions will uniquely give the metric tensor of the spacetime, which can 
be identified with the commutators between the components of coordinates 
x ~ and momentum pV of the test charge. 

Define an antisymmetric field F~,. as 

F.,,(x, p)= ~ Fp., p,,] (2.9) 

We shall show that F~u satisfies the sourceless Maxwell equations in this 
curved spacetime. The definition suggests that in general F, ,  depends on 
both x" and Pv- However, using the Jacobi identity 

[ X~, [Pu, Pv]]  + [P , ,  [Pv, X~] ]+[Pv ,  [x~, P , ] ]  = 0  (2.10) 

with equations (2.2) and (2.9), one obtains 

[x ~, F~,,(x, p)] = 0 (2.11) 
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If F~v(x, p) is analytic in at least some finite domain •(x, p) of x" and p~, 
then from (2.1) and (2.2) (Merzbacher, 1970) 

gFuv (2.12) [x% F,v(x, p)] = --ih ap~ 

in D(x, p). So equation (2.11) implies that F,v can be chosen independent 
of p~ in D, that is, F~,~ = F,v(x). Another application of the Jacobi identity 
gives 

[p~, [p~,pT]]+[pt~,  [p~,p~]]+[p~;,  [p~, p~]] = 0  (2.13) 

which by virtue of (2.9) gives 

[p~, F,~] + [p , ,  F~]  + [p~, F~,] = 0 (2.14) 

Since F,~(x) is analytic in ~, equation (2.2) implies (Merzbacher, 1970) 

[p~, F,~(x)] = ih 0~F~7 (2.15) 

Therefore (2.14) reduces to 

~ F ~  + 8~F~ + %F~ = 0 (2.16) 

in the domain D. These are the sourceless Maxwell equations in fiat 
spacetime. In curved spacetime the covariant derivative of F~ is defined by 

D ~F~B = ~ ~F~ - FV~F~ - F ~ F ~  (2.17) 

From the symmetry of the affine connection F~u in /~, v and the anti- 
symmetry of F~r it can be shown that (Weinberg, 1972) 

D~F~+D~F~+D,~.F~=O~F~+~?~F~+O~F~ (2.18) 

Hence (2.16) becomes 

D~F~,~ + D~FT~ + DTF~ = 0 (2.19) 

These are the well-known sourceless Maxwell equations in the presence of 
a gravitational field (Weinberg, 1972). Therefore we see that the 
commutators between the components of the momentum of the test charge 
in a gravitational field identically satisfy the sourceless Maxwell equations. 
If J~'(x) is the source for the electromagnetic field, then the other Maxwell 
equations 

c 
J~(x) = - -  D , F  ~ (2.20) 

4n 

will determine the commutators uniquely. 
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Hence the solution of Maxwell's equations in the curved spacetime with 
proper boundary conditions will give the electromagnetic field tensor which 
can be identified with the commutators between the components of the 
momentum pe of the test charge. 

3. EQUATION OF MOTION OF THE TEST PARTICLE 

The test charge q of rest mass m o is moving in the electromagnetic and 
gravitational fields. All the commutators between the components of coor- 
dinates and momentum of the test charge are now known. Therefore, using 
them and the field equations, we can derive the differential equation of 
motion of this test charge. 

Let us define the force on the particle due to the fields as 

dp~ (3.1) 
X~(x, p)= dr 

From the definitions (2.7) of p~ and (2.9) of F.v, we find 

[p", p~l = - ihq  F~'~(x) ih 
c - - 2  (p~vg~"+~g~"p~) (3.2) 

where the domain in which the metric tensor g,~(x) is analytic has been 
considered and the following result has been used (Merzbacher, 1970): 

[p~, g~,V] = ih ~ g~ (3.3) 

Now differentiating equation (2.2) with respect to the proper time r and 
then applying (3.2) we obtain 

_ _  1 ira~ Ix ~, K~] + q-FQ = - ~  ( p ~ g ~  + ~vg"~p.~) (3.4) 
h c 

This is the equation of motion of the charged particle in commutator form. 
Applying the standard (normal) symmetric ordering convention, we can 
define the total derivative of F~v(x) as 

dF.v(x) 1 
dr 2mo 

(p~F~, ,  + ~F~vp~) (3.5) 

Applying this definition to the differential equations (2.9), we also find the 
following consistency conditions: 

ihq 
[p, ,  Kv] - [Pv, K,] - 2moc (p~O~F.v + O~F.v p~) (3.6) 
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Hence to obtain the differential equation of motion of the test charge 
one has to find the most general solution of (3.4) subject to the consistency 
conditions (3.6). The most general solution of K~(x, p) will be of the form 

K~(x ,p ) -  q (ap~F=~+bF~up~)- l  (pp=p~3vg ~ 
mo c rno 

+Qp~O,.g=ap~+R~g~p=p~)+H~(x,p)  (3.7) 

where a, b, P, Q and R are in general complex numbers independent of x = 
and p~. They satisfy the following equations: 

a + b = 1 (3.8a) 

2P + O = 1 (3.8b) 

Q + 2R = �89 (3.8c) 

H~(x, p) are arbitrary functions of x" and p, which satisfy the following 
commutation relations: 

[x ~, H,(x, p)] = 0 (3.9) 

To determine a, b, P, Q and R uniquely, the solution of K~(x, p) is 
substituted in the consistency conditions (3.6). Using the definition (2.9) of 
F~  and equations (2.15) and (3.3), we obtain the following result from the 
general solution of Ku : 

[p~,, K~] -- [p~, K~] 

ihqa p~( g~  O ~F~ + g~ O~F~,~ + F~3 ~ g~  - F~8~ g~) 
moc 

ihqb 

moc 
- - -  (~ ,F~  g ~  + ~vF.t ~ ge= + F ~ ,  g~B _ F~u~ g~a) p~ 

+ ihqP (F~,~ p~Ov g=t~_ F~ p~d~ g~a + p~F~a3~ g~a- p~F~r g~a) 
moc 

+ ihqQ 

moC 
(F~=Ov g=~p~ - Fv~O~, g~p~ + P~v g~aF~ - p~O, g~F~)  

+ ihqR 

moc 
(Or g:'~F~,~ p ~ - 3 ~ g~Fv~ p ~ + ~ g~  p~F~,~ - 0 ~, g~  p~Fv~ ) 

+ Ep , , / 4 , ]  - Ep,, H A  (3.1o) 
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Applying the consistency conditions (3.6) and 
equations (2.16), we find 

im o c 
hq ([P~' H,,] - [p,,, H~]) 

+ (a-- P -  Q) p~(F~Ou g ~ -  FMO ~ g~) 

+ (b - Q - R)(F,,r g~r - F ~ v  g~) p~ 

1569 

the electromagnetic field 

+ P(F,~ p~t? v g~ - F~p~c?~ g~) + R(t?~ g~p~F~ - 0~, g~r 

(3.11) 

are. arbitrary functions that arise due to the integration of H~(x, p) 
equation (3.4) and are not a consequence of the existing electromagnetic 
and gravitational fields. To maintain this arbitrariness we must have 

[p~, Hv(x, p)] - [Pv, H~(x, p)] = 0 (3.12) 

because otherwise H~ will have to depend on the fields and their 
derivatives. Equation (3.12) will be valid if all the coefficients of the r.h.s. 
of (3.11) identically vanish. Then 

a = �89 = b (3.13a) 

a - P - Q = O = b - Q - R  (3.13b) 

P = 0 = R  (3.13c) 

These equations uniquely determine the numbers a, b, P, Q and R as 

1 (3.14a) a = b = Q = ~  

P = R = 0  (3.14b) 

which are consistent with equations (3.8a)-(3.8c). 
Therefore the differential equation of motion of the test charge 

in presence of both electromagnetic and gravitational fields has been found 
to be 

dpu 1 q 
rno--~z +-~p~O~g~/~pr -- (p~F~+F~p~)+H~(x ,  p) (3.15) 

where Hi, are arbitrary functions which satisfy the commutation relations 
(3.9) and (3.12). When there are no other fields, H~(x, p) can be chosen to 
be zero. Then we get the well-known Einstein-Maxwell equation of motion. 



1570 Bandyopadhyay 

4. REMARKS A N D  D I S C U S S I O N  

It appears from Dyson (1990) that Feynman's original motivation was 
to find more general methods than the usual quantization program, to find 
new ways of looking at physics. Our motivation for generalizing his techni- 
ques in curved spacetime was to see how the gravitational field can be 
brought into the electromagnetic interactions and in this way to achieve a 
somewhat unified theory. Although in this paper the electromagnetic and 
gravitational fields are not entirely unified, our theory leads to a unified 
equation of motion for a massive, charged test particle in the presence of 
both of those fields. Also the field equations for electromagnetism and 
gravitation have been linked through these laws of motion. 

The work of Feynman and Dyson has also been generalized by Lee 
(1990) for non-Abelian electrodynamics. It has been found that Feynman's 
scheme fits very well in the Yang-MiUs theory. Although his original aims 
were different, considering all these results, it appears that Feynman and 
Dyson's theory may stand as a possible framework for establishing a 
unified theory of electricity, magnetism, and gravity. In this connection it 
should also be noted that it is not possible to obtain an expression for 
H~(x, p), which appeared in the equation of motion of the test charge, only 
from the information of the electromagnetic and gravitational fields. H,  
was chosen arbitrarily to be zero, but it will be extremely interesting if H~, 
contains information of the weak and strong fields interacting with the test 
particle. 

It is important to note that the bracket [A, B] in our calculations may 
not be a strictly quantum mechanical commutator. In general, any 
arbitrary Lie bracket can Work that satisfies equations (2.1) and (2.2) 
identically. 

For defining p" and dF~v/& we used the standard (normal) symmetric 
ordering convention, which is not necessarily important. By defining 

p" = ~p~ g~U + rlg~p~ (4.1) 

dF~,, =--l (7~p~?~F~,v + 2UF~vp~ ) (4.2) 
dz m o 

where 4, t/, )~, 2 are all in general complex numbers, and applying the 
following equations due to their corresponding classical formulas 

+ ~ = 1 (4.3a) 

X + 2 = 1 (4.3b) 
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one can get the same results as the symmetric (normal) ordering conven- 
tion. The consistency condition on the force K~(x, p) uniquely determines 
the values of all the numbers as 1/2, which implies the symmetric ordering 
convention. 
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